Origin and Evolution of the Secant Method in One Dimension
نویسندگان
چکیده
Many in the mathematical community believe that the secant method arose from Newton’s method using a finite difference approximation to the derivative, most likely because that is the way that it is taught in contemporary texts. However, we were able to trace the origin of the secant method all the way back to the Rule of Double False Position described in the 18th-century B.C. Egyptian Rhind Papyrus, by showing that the Rule of Double False Position coincides with the secant method applied to a linear equation. As such, it predates Newton’s method by more than 3,000 years. In this paper, we recount the evolution of the Rule of Double False Position as it spanned many civilizations over the centuries leading to what we view today as the contemporary secant method. Unfortunately, throughout history naming confusion has surrounded the Rule of Double False Position. This naming confusion was primarily a product of the last 500 years or so and became particularly troublesome in the past 50 years, creating confusion in the use of the terms Double False Position method, Regula Falsi method, and secant method. We elaborate on this confusion and clarify the names used.
منابع مشابه
The modified BFGS method with new secant relation for unconstrained optimization problems
Using Taylor's series we propose a modified secant relation to get a more accurate approximation of the second curvature of the objective function. Then, based on this modified secant relation we present a new BFGS method for solving unconstrained optimization problems. The proposed method make use of both gradient and function values while the usual secant relation uses only gradient values. U...
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کاملSecant Varieties of Segre-veronese Varieties
In this paper we study the dimension of secant varieties of Segre-Veronese varieties P × P embedded by the morphism given by O(1, 2). Given the dimensions m, n, we provide two functions s(m, n) and s(m, n), such that the s secant variety is nondefective, i.e. it has the expected dimension, if s ≤ s(m, n) or s ≥ s(m, n). Finally, we present a conjecturally complete list of defective secant varie...
متن کاملOn the variety parametrizing completely decomposable polynomials
The purpose of this paper is to relate the variety parameterizing completely decomposable homogeneous polynomials of degree d in n+1 variables on an algebraically closed field, called Splitd(P ), with the Grassmannian of n−1 dimensional projective subspaces of P. We compute the dimension of some secant varieties to Splitd(P ) and find a counterexample to a conjecture that wanted its dimension r...
متن کاملTwo Settings of the Dai-Liao Parameter Based on Modified Secant Equations
Following the setting of the Dai-Liao (DL) parameter in conjugate gradient (CG) methods, we introduce two new parameters based on the modified secant equation proposed by Li et al. (Comput. Optim. Appl. 202:523-539, 2007) with two approaches, which use an extended new conjugacy condition. The first is based on a modified descent three-term search direction, as the descent Hest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American Mathematical Monthly
دوره 120 شماره
صفحات -
تاریخ انتشار 2013